Transport Analytics
Indicateurs
Introduction aux indicateurs et calculs
Indicateurs (KPIs) globaux
Indicateur : Validations
Indicateur : Montées/descentes (module Fréquentation)
Indicateur : Avance/retard & Niveaux d'avance/retard
Indicateur : Ponctualité voyageur
Indicateur : Ponctualité
Indicateur : Temps d'attente excédentaire
Indicateur : Régularité
Indicateur : Voyages/km
Indicateur : Nombre de courses
Taux de réalisation du nombre de courses
Indicateur : Production kilométrique
Indicateur : Vitesse commerciale
Indicateur : Temps de parcours
Indicateur : Temps d'arrêt
Indicateur : Empreinte carbone
Indicateur : Empreinte Carbone - paramétrage
Indicateur : Déplacements
Indicateur : Montées/descentes brutes (Module Qualité > Comptage)
Indicateur : Charge brute (Module Qualité > Comptages)
Indicateur : Confort voyageur
Indicateur : Charge (module Fréquentation)
Indicateur : Voyages
Calcul des moyennes par jour
Indicateur : Courses en surcharge
Algorithmes et calculs
Calcul de la fréquentation unifiée
Reconstitution des flux O-D et de la Charge
Reconstitution des déplacements
Reconstitution des voyages
Reconstitution de la charge
Reconstitution des voyages - Annexe 1 : exemple méthode des voyages consécutifs
Reconstitution des voyages - Annexe 2 : correspondance avec les courses
Données simulées
Calcul de la fréquentation extrapolée
Calcul de la fréquentation débruitée
Interface et modules
Comment fonctionne l'interface
Les différents modules disponibles sur CITiO Analytics
Module Tableau de bord
Module Fréquentation
Module Exploitation
Module Course
Module Qualité
Analyses croisées
Utiliser les filtres temporels
Réaliser un export de données
Affichage des éléments actifs et inactifs d'un réseau
Introduction à CITiO Analytics
Glossaire Analytics
FAQ
Cas d'usages
Suivre la remontée des données
Comprendre une anomalie
Analyser et suivre la fréquentation
Faciliter la préparation des reportings internes et externes
Identifier les heures de pointe
Accéder aux données en J+1
Améliorer la fiabilité de vos données et systèmes
Gérer votre réseau au quotidien
Identifier des systèmes défaillants
Suivre les avances/retards au quotidien
Répondre aux sollicitations du PCC (avances/retards)
Adapter de manière réactive l'offre en réponse à la demande
Définir les marches-type par tronçon ou par inter-station
Identifier les secteurs où réaliser des aménagements de voirie
Formation continue des conducteurs
Etudier l'usage des Titres de transport et adapter la tarification
Le partage des indicateurs clés du réseau
Analyser les temps d'arrêt
Mise en place d'une campagne marketing ciblée
Identifier rapidement les écarts entre le théorique et le réel
Partage des informations entre AOM et Exploitant
Définir les plages horaires de marche-type
Formation continue des régulateurs
Découvrez les cas d'usage de CITiO !
Analyser la charge à bord
Utiliser l'indicateur de Ponctualité voyageurs
Gérer les réclamations voyageurs
Assurer une transparence sur le sujet des temps de parcours
Identifier les lignes à travailler
Optimiser les temps de parcours
Fraud Tracker
Cas d'usages
Déterminer une fréquentation réelle sur le réseau
Planifier les opérations de contrôle/sensibilisation en amont
Analyser l'impact des opérations de contrôle/sensibilisation en aval
Optimiser le choix des véhicules à contrôler au cours de l’opération
Modules
Glossaire Fraude
Traitements de données
Présentation générale de Fraud Tracker
Traitements de données pour le calcul de la fraude
FAQ (Fraud Tracker)
Analyses croisées sur Fraud Tracker
Prédiction de fraude
Transport Planner
Rail Analytics
Sommaire
Module Exploitation : calculs des indicateurs liés aux heures de passages
Présentation du Module Circulation
Visualisation par numéro de train
Visualiser les montées/descentes par tronçon
Taux de reconnaissance
Rapprochement des données de comptage au plan de transport
Occupancy API
Authentification
Occupany API - Sommaire
What is the Occupancy Prediction API?
The Occupancy API : how does it work?
The Occupancy Prediction API : how to use it?
/api/login - Login
/rest/predicted_occupancy - Occupancy Prediction API
Release note (Occupancy API)
Transport Analytics API
Date Perimeters format
/kpis/tc/overcrowding/
/api/login - Login
/kpis/ticketing/{filter_level}[/{filter_level_id}]/{aggregation_level}
/rest/lines
/rest/service_date
How to create a graph of Validations per line
Architecture et sécurité
- Toutes les catégories
- Fraud Tracker
- Traitements de données pour le calcul de la fraude
Traitements de données pour le calcul de la fraude
Le calcul de la fraude utilise des filtres différents selon qu'il s'agit de l'indicateur Montées frauduleuses basé sur l'historique de données billettique et comptages (modules Tableau de bord et Statistique) ou d'une prédiction (module Prochains passages)
Indicateur "Montées frauduleuses" (modules Tableau de bord et Statistiques)
L'indicateur "Montées frauduleuses" des modules Tableau de bord et Statistiques s'appuie sur le calcul suivant :
montées (comptages débruités) - montées (billettique rectifiée)
- Les données de comptage sont débruitées
- Les montées (billettique) correspondent, à peu de chose près, aux validations. Pour en savoir plus, se reporter à la documentation de la reconstitution de la charge
- Ces montées billettiques sont rectifiées avec un coefficient défini uniformément sur chaque agence. Il permet de simuler la prise en compte des problèmes de remontées des validations, des validations délocalisées, des valideurs ou cartes hors service. Par défaut le coefficient est de 10%
- Avant de réaliser ce calcul comptage débruité - billettique rectifié, un certain nombre de filtres sont appliqués aux données pour les rendre cohérentes :
- mise en cohérence de la reconstitution billettique et des cellules de comptages : quand les montées/descentes (billettique) ont une valeur plus élevée que les montées/descentes (cellules de comptage), on élève les montées/descentes (cellules de comptage) au niveau des montées/descentes (billettique). Autrement dit, on augmente le nombre de montées/descentes (cellules de comptage) pour qu'il ne soit pas inférieur au nombre de montées/descentes (billettique)NB : cette modification se produit rarement, uniquement dans le cas où le débruitage n'a pas trouvé de solution garantissant que le nombre de montées/descentes (comptages) est supérieur au nombre de montées/descentes (billettique)
- suppression des mesures aberrantes (premier et dernier décile des Montées frauduleuses par mois et par station).
- mise en cohérence de la reconstitution billettique et des cellules de comptages : quand les montées/descentes (billettique) ont une valeur plus élevée que les montées/descentes (cellules de comptage), on élève les montées/descentes (cellules de comptage) au niveau des montées/descentes (billettique). Autrement dit, on augmente le nombre de montées/descentes (cellules de comptage) pour qu'il ne soit pas inférieur au nombre de montées/descentes (billettique)
Il y a donc trois étapes :
- Calcul des montées (comptage débruités) et des montées (billettiques rectifiées)
- Calcul des montées frauduleuses (soustraction)
- Mise en cohérence et suppression des mesures aberrantes
Prédiction de fraude (module Prochains passages)
Le module Prochains passages repose sur une prédiction du nombre de fraudeurs à bord dont le calcul est détaillée ici : Calcul de la prédiction de fraude.