Transport Analytics
Indicateurs
Introduction aux indicateurs et calculs
Indicateurs (KPIs) globaux
Indicateur : Validations
Indicateur : Montées/descentes (module Fréquentation)
Indicateur : Avance/retard & Niveaux d'avance/retard
Indicateur : Ponctualité voyageur
Indicateur : Ponctualité
Indicateur : Temps d'attente excédentaire
Indicateur : Régularité
Indicateur : Voyages/km
Indicateur : Nombre de courses
Taux de réalisation du nombre de courses
Indicateur : Production kilométrique
Indicateur : Vitesse commerciale
Indicateur : Temps de parcours
Indicateur : Temps d'arrêt
Indicateur : Empreinte carbone
Indicateur : Empreinte Carbone - paramétrage
Indicateur : Déplacements
Indicateur : Montées/descentes brutes (Module Qualité > Comptage)
Indicateur : Charge brute (Module Qualité > Comptages)
Indicateur : Confort voyageur
Indicateur : Charge (module Fréquentation)
Indicateur : Voyages
Calcul des moyennes par jour
Indicateur : Courses en surcharge
Algorithmes et calculs
Calcul de la fréquentation unifiée
Reconstitution des flux O-D et de la Charge
Reconstitution des déplacements
Reconstitution des voyages
Reconstitution de la charge
Reconstitution des voyages - Annexe 1 : exemple méthode des voyages consécutifs
Reconstitution des voyages - Annexe 2 : correspondance avec les courses
Données simulées
Calcul de la fréquentation extrapolée
Calcul de la fréquentation débruitée
Interface et modules
Comment fonctionne l'interface
Les différents modules disponibles sur CITiO Analytics
Module Tableau de bord
Module Fréquentation
Module Exploitation
Module Course
Module Qualité
Analyses croisées
Utiliser les filtres temporels
Réaliser un export de données
Affichage des éléments actifs et inactifs d'un réseau
Introduction à CITiO Analytics
Glossaire Analytics
FAQ
Cas d'usages
Suivre la remontée des données
Comprendre une anomalie
Analyser et suivre la fréquentation
Faciliter la préparation des reportings internes et externes
Identifier les heures de pointe
Accéder aux données en J+1
Améliorer la fiabilité de vos données et systèmes
Gérer votre réseau au quotidien
Identifier des systèmes défaillants
Suivre les avances/retards au quotidien
Répondre aux sollicitations du PCC (avances/retards)
Adapter de manière réactive l'offre en réponse à la demande
Définir les marches-type par tronçon ou par inter-station
Identifier les secteurs où réaliser des aménagements de voirie
Formation continue des conducteurs
Etudier l'usage des Titres de transport et adapter la tarification
Le partage des indicateurs clés du réseau
Analyser les temps d'arrêt
Mise en place d'une campagne marketing ciblée
Identifier rapidement les écarts entre le théorique et le réel
Partage des informations entre AOM et Exploitant
Définir les plages horaires de marche-type
Formation continue des régulateurs
Découvrez les cas d'usage de CITiO !
Analyser la charge à bord
Utiliser l'indicateur de Ponctualité voyageurs
Gérer les réclamations voyageurs
Assurer une transparence sur le sujet des temps de parcours
Identifier les lignes à travailler
Optimiser les temps de parcours
Fraud Tracker
Cas d'usages
Déterminer une fréquentation réelle sur le réseau
Planifier les opérations de contrôle/sensibilisation en amont
Analyser l'impact des opérations de contrôle/sensibilisation en aval
Optimiser le choix des véhicules à contrôler au cours de l’opération
Modules
Glossaire Fraude
Traitements de données
Présentation générale de Fraud Tracker
Traitements de données pour le calcul de la fraude
FAQ (Fraud Tracker)
Analyses croisées sur Fraud Tracker
Prédiction de fraude
Transport Planner
Rail Analytics
Sommaire
Module Exploitation : calculs des indicateurs liés aux heures de passages
Présentation du Module Circulation
Visualisation par numéro de train
Visualiser les montées/descentes par tronçon
Taux de reconnaissance
Rapprochement des données de comptage au plan de transport
Occupancy API
Authentification
Occupany API - Sommaire
What is the Occupancy Prediction API?
The Occupancy API : how does it work?
The Occupancy Prediction API : how to use it?
/api/login - Login
/rest/predicted_occupancy - Occupancy Prediction API
Release note (Occupancy API)
Transport Analytics API
Date Perimeters format
/kpis/tc/overcrowding/
/api/login - Login
/kpis/ticketing/{filter_level}[/{filter_level_id}]/{aggregation_level}
/rest/lines
/rest/service_date
How to create a graph of Validations per line
Architecture et sécurité
- Toutes les catégories
- Fraud Tracker
- Traitements de données
Traitements de données
Analyse de la fraude
Article détaillé : calcul de la fraude
La fraude est estimée sur la base de deux sources de données :
- les validations de titres de transports (données billettiques)
- les cellules de comptage installées à l'entrée et la sortie du véhicule.
Si ces deux sources ne sont pas disponibles, il n'est pas possible de mesurer l'importance de la fraude.
Les cellules de comptages permettent de déterminer combien de personnes sont effectivement montées à bord du véhicule, fraudeuses ou non.
Les validations permettent de déterminer combien de personnes sont montées à bord avec un titre de transport validé et en règle.
En faisant la différence entre ces deux volumes, on obtient une estimation de la fraude, définie comme l'ensemble des passagers utilisant le service sans disposer d'un titre de transport en règle, et aussi appelées "non validations".
En synthèse : fraude = passagers totaux - passagers en règle
Conceptuellement, on distingue la fraude dure (passager sans titre de transport) de la fraude molle (passager muni d'un titre, tel qu'un abonnement, mais qui n'a pas validé son titre de transport). Il n'est cependant pas possible de distinguer ces types de fraude et de mesurer la répartition de l'une et l'autre à partir des sources de données utilisées. Les indicateurs de fraude proposés par l'outil intègrent donc fraude dure et fraude molle, ou autrement dit, toutes les non validations.
Analyse des contrôles
Lorsqu'elles sont digitalisées, les opérations de contrôle produisent un certain nombre de données qui peuvent être exploitées dans le logiciel Fraud Tracker. On peut ainsi piloter l'efficacité de ces opérations et organiser les opérations futures en déterminant les zones et créneaux temporels les plus pertinents.
NB : tout contrôle qui ne laisse pas de trace numérique, tels que les contrôles à vue, ne sera pas comptabilisé dans l'outil.
Concrètement, les données utilisées sont :
- l'historique des contrôles effectués
- l'historique des contraventions établies et payées